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1 Summary

The aim of this project is to classify and ultimately predict the success or failure of a kickstarter
fund rising campaign based on data monthly crawled from the kickstarter.com web site by a
scraper robot (http://webrobots.io).

2 Problem definition and background

Kickstarter is an American corporation with a public benefit status launched in 2009 in the
United States. The company initiated its international expansion in 2012. The kickstarter
platform is open to backers from anywhere in the world and to creators from many countries.

Kickstarter maintains a global crowdfunding platform focused on creativity. Project creators
choose a deadline and a minimum funding goal. If the goal is not met by the deadline, no funds
are collected and the project is considered failed. Project backers usually receive rewards in
exchange for their pledges. Once a project collects enough pledges to bypass the goal before a
deadline stablished by the creator, its state changes to successful. Only at that moment pledges
are collected from backers. From that point onward, there is no guarantee for project delivery.
Kickstarter advises backers to use their own judgment on supporting a project. They also warn
project leaders that they could be liable for legal damages from backers for failure to deliver on
promises.

On one hand, from a backer point of view, it would be interesting to have an analytic model to
help with the decision of whether to pledge for a project or not. On the other hand, from the
project creators, it would be interesting to have a guide to help them optimize their chances of
success.

3 Data description and pre-processing

Raw data were collected from https://webrobots.io/kickstarter-datasets/ in CSV format. The
downloaded data correspond to a crawl executed on February 13 2020. Raw data are composed
by 57 CSV files with 3500 to 4000 rows each. See the subsection 3.2 to access the profile report
of the raw data. The raw original variables are:

• backers count: integer representing how many people supported the project (backers).

• blurb: textual description of the project (around 150-200 characters).

• category: JSON-encoded description on the kickstarter’s fixed categories: id, name, slug,
position, parent id, parent name, color, urls.

• converted pledged amount: pleged amount converted to USD.

• country: country initials (i.e: FR for France):

• country displayable name: country name.

• created at: date on Unix time format.

• creator: JSON-encoded description on project’s creator. id, name, is registered, cho-
sen currency, is superbacker, avatar, small, medium, url web, url api.
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• currency: currency acronym.

• currency symbol.

• currency trailing code: boolean variable.

• current currency: USD.

• deadline: crowdfunding deadline in Unix time established by the project’s creator.

• disable communication: boolean variable.

• friends.

• fx rate: conversion rate.

• goal: fund rising goal in creator’s fixed currency.

• id: project identifier.

• is backing.

• is starrable.

• is starred.

• launched at: launch date on Unix time format.

• location: JSON-encoded description of the project’s creator location: id, name, slug,
short name, displayable name, localized name, country, state, type, is root, expanded country,
url web, url location, url api nearby projects.

• name: project’s name.

• permissions.

• photo: JSON-encoded description on project’s photos: key, full, ed, med, little, small,
thumb, 1024x576, 1536x864.

• pledged: pledged amount in original country currency.

• profile: JSON-encoded description on project’s profile: id, project id, state, state changed at,
name, blurb, background color, text color, link background color, link text color, link text,
link url, show feature image, background image opacity, should show feature image section,
feature image attributes, image urls.

• slug: small textual description with - as spacers.

• source url: url pointing to project’s category site on kickstarter.

• spotlight: boolean representing if the project was featured on kickstarter web site.

• staff pick: boolean representing if the project was picked by kickstarter staff.

• state: project’s state initialy composed by 5 categories (successful, failed, canceled, sus-
pended and live.

• state changed at: date in Unix time format.

• static usd rate: static rate for currency conversion into USD.

• urls: JSON-encoded description containing urls: project, rewards.
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• usd pledged.

• usd type: domestic.

3.1 Data pre-processing

The following steps were followed to obtain a clean dataset for model training or EDA from raw
data.

• Join CSV files. Raw data contain ambigous JSON-encoded fields that induce errors while
parsing. To avoid those errors, ambigous JSON-encoded containing rows were filtered out
while joining data into an unique file , see pre join.py.

• Deserialize JSON-encoded columns. Columns and rows with missing information were
dropped (”friends”, ”is backing”, ”is starred”, ”permissions”) from raw data before JSON
deserialization. JSON-encoded columns (’category’, ’creator’, ’location’, ’photo’, ’profile’,
’urls’ ) were isolated from the rest of raw data and deserialized using a custom made function
(deserialize in batch) by means of the json normalize method from the pandas package and
loads from the json package. The implementation is available at pre decode JSON.py).

• Selection and pre-processing of deserialized variables. The implementation of the
following steps can be accessed at pre deserialized to one hot encoding.py.

– Drop category slug because it contains partial redundant information with category name
and category parent name.

– Fill category parent name missing values with their corresponding category name
value.

– Exploration of location related variables: location localized name, location country,
and location expanded country

∗ location localized name contains no missing values and 12977 unique values. Such
a number of levels for a categorical variable might not be informative. Drop
location localized name.

∗ location country and location expanded country are redundant. Drop location country
because is less human readable.

– Profile related variables. Codification of profile related variables into a binary code
reflecting the involvement of the project creator in the generation of a profile.

∗ Re-codification of categorical binary variables: profile state: ”inactive”=0, ”ac-
tive”=1 profile show feature image: False=0, True=1 profile should show feature image section:
False=0, True=1

∗ The rest of the profile related columns are going to be coded in a binary choice
variable (missing value = 0= , variable contains a project creator provided value
=1). The following columns were processed: ’profile name’, ’profile blurb’, ’pro-
file background color’, ’profile text color’, ’profile link background color’, ’profile link text color’,
’profile link text’, ’profile link url’.

– One hot encoding of categorical variables while keeping the original columns for EDA.
The variables ’category name’, ’category parent name’, ’location expanded country’
were codified using pd.get dummies and the argument drop first was set to True.
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• Change date format and compute date derived variables. The implementation is
available at pre date format and derived variables.py.

First, date and time coding variables (’created at’, ’deadline’, ’launched at’, ’state changed at’)
in the raw data are in Unix time format and need to be transformed into datetime. The
following variables where computed from the original ones: weekday columns for each date
variable, month columns for each date variable, year columns for each date variable.

’initial found rising duration’ was computed as the difference in days between ’deadline’
and ’launched at’.

’found rising duration’ was computed as the difference in days between ’state changed at’
and ’launched at’.

’project set up duration’ was computed as the difference in days between ’launched at’ and
’created at’.

Date variables were prunned before model training to remove the ’state changed at’ derived
ones.

• Currency derived variables pre-processing.

The implementation is available at pre currency and other variables.py.

The following original variables were dropped due to redundancies or because they are
not informative for the model: ’current currency’, ’currency trailing code’, ’fx rate’, ’con-
verted pledged amount’, ’pledged’, ’slug’, ’usd type’.

The variable ’usd goal’ was computed by multiplication of the variables ’goal’ ’and ’static usd rate’
to able to compare the pledge goals for all the projects. ’goal’ and ’static usd rate’ were
dropped after the generation of ’usd goal’.

The variable ’is starrable’ was also dropped, because of lack of relevance.

The variables ’disable communication’, ’spotlight’ and ’staff pick’ were recodified by re-
placing False=0 and True=1.

The variable currency was dummified using get dummies (the original varaible was kept
for visualization purpose).

• State pre-processing (target variable).

The implementation is available at pre currency and other variables.py.

State is the target variable for classification. The raw variable is a categorical variable with
5 levels(’successful’, ’failed’, ’live’, ’canceled’, ’suspended’) and no missing values.

The variable ’state group’ was generated by grouping the canceled and suspended projects
into ’failed’. It contains then 3 distinct levels (’successful’, ’failed’ and ’live’).

The variable ’state code’ was generated by dummification from ’state grouped’ (failed =
0, successful=1, live=2). There are 114940 successful projects, 84311 failed projects and
6651 live projects.

• Join the JSON decoded variables to the rest of the data.

The implementation is available at pre join and drop live state.py.
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• Drop rows corresponding to projects on a ”live” state.

The implementation is available at pre join and drop live state.py.

• Evaluate and drop duplicate rows.

The implementation is available at pre duplicates.py. 21392 duplicate rows were de-
tected and removed before further processing using pandas duplicated and drop duplicates
functions.

• Drop variables carrying low information.

Data dimensions at this processing stage was 177859 rows and 428 columns. In the following
scripts I will evaluate the informative potential of different subsets of variables and drop
the less informative ones in order to reduce the number of binary encoded columns and
reduce the overfitting potential.

– Generation of the variable ’profile’.

The implementation is available at pre profile pruning.py.

’profile’ was generated by addition of the following columns: ’profile state’, ’profile
name’, ’profile blurb’, ’profile background color’]+ df[’profile text color’, ’profile
link background color’, ’profile link text color’, ’profile link text’, ’profile link
url’, ’profile show feature image’, ’profile should show feature image section’. It
represents an score accounting for profile completeness. The variables were dropped
after the score was computed.

The number of columns was reduced to 418.

– Category name pruning.

The implementation is available at pre category name pruning.py.

’category name ori’ encodes 159 subcategories of the 15 parent categories for kick-
starter’s projects. In order to evaluate the information content of each of these sub-
category levels, plots and percentages of successful projects by secondary category
were plotted to decide which one hot encoded columns under category name to drop.
Only categories with a percentage of successful projects of at least 55% (project suc-
cess rate for the data is 53%) that were informative within their parent categories
were kept.

After verification of plots and percentages, all comic, theater, dance secondary cate-
gories contain more successful tha failed projects, see Figure 1. As they are not more
informative than their parent categories, those secondary categories were removed.

The following subcategories were kept: ’Anthologies’, ’Letterpress’, ”Children’s Books”,
’Art Books’, ’Publishing’, ’Literary Spaces’, ’Fiction’, ’Nonfiction’, ’Playing Cards’,
’Video Games’, ’Tabletop Games’, ’Games’, ’Puzzles’, ’Journalism’, ’Public Art’, ’Il-
lustration’, ’Painting’, ’Art’, ’Social Practice’, ’Shorts’, ’Narrative Film’, ’Documen-
tary’, ’Webseries’, ’Film & Video’, ’Crafts’, ’Photography’, ’Product Design’, ’Ty-
pography’, ’Design’, ’Classical Music’, ’Country & Folk’, ’Indie Rock’, ’Pop’, ’Music’,
’Jazz’, ’Comedy’, ’Rock’, ’Chiptune’, ’Apparel’, ’Accessories’, ’Fashion’, ’Gadgets’,
’Hardware’, ’Technology’.

The number of columns was reduced to 304.
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(a) Count plot of successful and failed projects and subcategories of Comics principal
category.
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(b) Count plot of successful and failed projects and subcategories of Dance principal
category.
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(c) Count plot of successful and failed projects and subcategories of Dance principal
category.

Figure (1) Count plots of successful and failed projects within categories.
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– Country pruning. The implementation is available at pre country pruning.py.

Projects in the dataset come from 198 countries. In order to reduce the number of
variables, I performed count plots and percentages of successful projects by country.
Only countries with more than 55% of successful projects and more than 50 projects
were kept (United Kingdom, Hong Kong, Japan, Singapore, China, Poland, Israel,
Taiwan, Czech Republic, Greece, Indonesia, Argentina, Kenya, Iceland, Ghana, Por-
tugal, Slovenia, Finland).

The number of columns was reduced to 125.

– Currency pruning. The implementation is available at pre currency pruning.py.

Currency encodes 14 different levels. Count plots and percentages of succesfull projects
were computed for tha variable ’currency orig’. Currencies with more than 55% of suc-
cessful projects were retained (GBP, HKD, SGD, JPY) and compared to the retained
countries. All currency levels were dropped because the selected currencies correspond
to countries that were already selected and the information was redundant.

The number of columns was reduced to 112.

• Drop rows with text in other languages than English. The implementation is
available at pre words.py.

The variables blurb and name contain brief descriptions of the project. In order to obtain
valuable information for the model, these text variables are going to be processed to obtain
keywords and compute a score due to their presence in the text. Projectś texts are writen
in several languages. Several attempts to translate all text into English were performed
using langdetect package. Unfortunately, the quantity of characters to translate was bigger
than the established API limits. The estimation of the fees for the translation using the
google translate API was 1200 e.

English rows were detected and isolated using a custom made function. Briefly, for each
row (project), blurb and name texts were tokenized and then compared to an extense
list of 370101 English words (https://github.com/dwyl/english-words/blob/master/words
dictionary.json). An score was computed considering tokens with more than 3 characters
and the lenght of the text. Rows with an score lower than 0.8 were considered not written
in English and discarded (55269 rows).

Data dimension after filtering was 122590 rows and 112 columns.

To be able to extract category keywords associated to successful or failed projects, data
were splitted in training and test sets at this point.

• Split train and test.

The implementation is available at pre split train test.py.

Before splitting the data in train and test sets, I visualized the projects by year (”state changed at”)
and state (see Figure 2).

The implementation is available at pre year EDA.py and

pre data prep temporal and classification.py.

The target variable (state) shows no clear correlation with time, as we can observe in
Figure 2. Moreover, our data are not evenly spaced in time. Therefore, after close exami-
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(b) Count plot of successful and failed projects by year.

Figure (2) Temporal dimension of the target variable.
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nation of our data, I decided to implement a random split of train and test sets using the
train test split functiikit learn model selection package, a train size of 73 % a 37 as random
seed. Before spliting, 15 columns were dropped, containing information not available prior
to the project’s state change. Dimensions of training set are 89490 rows and 97 columns,
and dimensions of test set are 33100 rows and 97 columns.

• Generation of the frequency score feature.

The implementation is available at pre text mining.py.

Title and descriptions of the project were processed to obtain an score based on word
frequencies in succesful and failed projects by principal category (’category parent name’,
15 categories). Word frequencies were computed using both ’blurb’ and ’name’ variables on
the training set. Punctuation signs were replaced by blank spaces, words were tokenized
(word tokenize from nltk package), stop words were filtered (stopwords from nltk), and
stemmed (PorterStemmer from nltk). Word frequency was computed using FreqDist (nltk
package). The frequency score was computed for every project by adding the successful
project frequency of every word present in its ’blurb’ and ’name’ variables and substracting
the failed project frequencies. The score was normalized by text lenght.

3.2 Exploratory data analysis

• Profile reports generated multiple times during data pre-processing using the pandas pro-
file package (https://pypi.org/project/pandas-profiling/) to help with data visualization.
Raw, train and test data htlm profiling reports can be found at my professional website.

The implementation is available at EDA profiling.py and EDA tt profile.py.

Pandas profiling generates an statistical description of the data and each variable, computes
interaction and correlation plots and warns about potential sources of problems such as
high correlation, duplicates, high cardinality for categorical variables and skewed or zero
containing variables. These reports (available at http://gloriagcurto.info/EDA profiles)
were extremely useful to quickly identify duplicated rows, variables with high numbers of
missing values and also non numerical variables present in the train and test sets that are
incompatible with XGBoost modeling.

• Word clouds were generated from the train and test sets by principal category and suc-
cessful or failed projects using WordCloud.

The implementation is available at pre text mining.py.

Word clouds were representative of each category and sometimes were helpful to identify
subcategories with high rates of failed projects (such as food trucks within Food, see Fig-
ure 3p). The majority of the most frequent 200 words were shared by successful and failed
projects within categories but they also always present especific more frequent words, see
Figure 3 and 13). If we take as an example the Comic word clouds (Figure 3c, 3d), we can
see that both successful and failed projects contain graphic novel, adventure and comic with
aproximatively the same frequency, but horror, fantasy and manga, are overrepresented in
the failed projects. At the same time, anthologies, sci fi and girl terms are overrepresented
in the succesful projects, suggesting possible differences in the succesful rate of different
comic genres. Other words were consistenly found associated to successful projects across
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categories. This is the case, for example, of enamel pin and hard enamel that were asso-
ciated to succesful projects from the crafts (Figure 3e) and fashion categories (Figure 3k),
and absent from the 200 most frequent words ( see Figures 3f and 3l).

For clarity purpose, test set word clouds can be found at the end of the document, see
Figure 13.

Word clouds were useful to understand project dinamics within categories and to evaluate
the pertinency of the frecuency score feature. As we can identify trends in the word clouds
associated to the target variable, the frequency score could potentialy help increase the
evaluation metrics of our model.

The rest of data visualization was performed as a guide during data pre-processing (see
Sections 3.1, 5 and Figures 1, 2, 9, 10, 11).

4 Data modeling

• Data processing prior to XGBoost training The implementation is available at
pre data model train.py and pre data model test.py. First, the target variable in nu-
meric format (’state code’) was isolated from the features and written to a file. Second,
non numeric features were identified thanks to the pandas-profiling report and removed.
Features were written to a file.

• Methodological choices The following packages were used for data modeling, evaluation
and interpretation:

– xgboost. Extreme Gradient Boosting classifier [1] was chosen due to its performance,
escalabilty and built-in model interpretation capabilities. The tree based booster was
prefered because of the intuitive interpretation of tree models.

– Scikit learn matrics: classification report, confusion matrix [2].

– bayesian-optimization [3] Bayesian optimization with cross validation was prefered as
hyperparameter tuning method over a grid or a random search because it has been
shown to obtain better results in fewer evaluations [4, 5].

– SHAP SHAP [6, 7] was prefered over other model interpretation methods due to its
mathematical strenght.

• Model training, first iteration

The implementation is available at train first model wo ts.py.

As a first attempt to model the data, a XGboost tree bosster classifier was initialized with
default parameter and fitted to the training data. Evaluation metrics for predictions using
both the training and test set were consistently found to show a score of 1, see tables 1, 2.

In order to diagnose the reason behind such a perfect metrics, training set label random-
ization was performed using shuffle from scikit learn utils package. A new model was fitted
with the shuffled labels and predictions for both the training and test sets were evaluated.
As shown in tables 3, 5 and in their corresponding confusion matrices 4, 6, predictions were
randomized after shuffling the labels, as proben by an accuracy of 50% in predictions for
the test set. These results suggest that the perfect scores are not due to overfitting.
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(a) Successful Art. (b) Failed Art.

(c) Successful
Comics.

(d) Failed Comics.

(e) Successful Crafts. (f) Failed Crafts.
(g) Successful
Dance.

(h) Failed Dance.
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(j) Failed Design.
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(l) Failed Fashion.
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& Video.

(n) Failed Film &
Video.

(o) Successful Food. (p) Failed Food.
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tography.
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nology.
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Figure (3) Wordclouds of successful and failed projects by principal category in the training
set.
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precision recall f1-score support

0 1.0 1.0 1.0 41522.0
1 1.0 1.0 1.0 47968.0
accuracy 1.0 1.0 1.0 1.0
macro avg 1.0 1.0 1.0 89490.0
weighted avg 1.0 1.0 1.0 89490.0

Table (1) Classification report for training set.

precision recall f1-score support

0 1.0 1.0 1.0 15423.0
1 1.0 1.0 1.0 17677.0
accuracy 1.0 1.0 1.0 1.0
macro avg 1.0 1.0 1.0 33100.0
weighted avg 1.0 1.0 1.0 33100.0

Table (2) Classification report for test set.

precision recall f1-score support

0 0.726857 0.325442 0.449587 41522.000000
1 0.604945 0.894138 0.721647 47968.000000
accuracy 0.630272 0.630272 0.630272 0.630272
macro avg 0.665901 0.609790 0.585617 89490.000000
weighted avg 0.661510 0.630272 0.595415 89490.000000

Table (3) Classification report for predictions of the train set using the model trained with
shuffled labels.

0 1

0 13513 28009
1 5078 42890

Table (4) Confusion matrix for predictions of the train set using the model trained with shuffled
labels.

precision recall f1-score support

0 0.419684 0.184141 0.255971 15423.000000
1 0.522159 0.777847 0.624858 17677.000000
accuracy 0.501208 0.501208 0.501208 0.501208
macro avg 0.470921 0.480994 0.440415 33100.000000
weighted avg 0.474410 0.501208 0.452975 33100.000000

Table (5) Classification report for predictions of the test set using the model trained with
shuffled labels.

Tree and importance plots for model interpretation implemented in the XGBoost package
solved the mistery, see Figure 4. Interpretation plots showed that the decision tree had a
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precision recall f1-score support

0 0.419684 0.184141 0.255971 15423.000000
1 0.522159 0.777847 0.624858 17677.000000
accuracy 0.501208 0.501208 0.501208 0.501208
macro avg 0.470921 0.480994 0.440415 33100.000000
weighted avg 0.474410 0.501208 0.452975 33100.000000

Table (6) Confusion matrix for predictions of the test set using the model trained with shuffled
labels.

unique branch and the predictions were solely based in the value of the feature ’spotlight’,
that was identified as highly correlated with the target variable by the pandas-profiling
reports.

After a search in the kickstater’s website, I found a more exact difinition for ’spotlight’
that the one provided with the data. Spotlight is a place for the projects on Kickstarter
were the creators can communicate their project’s progress, after they’ve been successfully
funded.

I removed ’spotlight’ from the features files and proceed to train a new model.

• Model training, second iteration

The implementation is available at train wo spotlight.py.

A bayesian Optimization function for xgboost was defined with the following parameters:

– ’objective’: ’binary:logistic’. Represents the learning task and the corresponding learn-
ing objective for a binary classification.

– ’max depth’: int(max depth). Maximum depth of a tree. Higher values make the
model more complex and more likely to overfit. Range: (0,∞).

– ’gamma’: gamma. Minimum loss reduction required to partition a leaf node of the
tree. Higher values make the algorithm more conservative. Range: (0,∞).

– ’learning rate’:learning rate. Step size shrinkage used in boosting iterations. Higher
values make the process more conservative. Range: (0,1).

– ’subsample’: subsample. Subsample ratio of the training instancesprior to growing
trees. Subsampling will occur once in every boosting iteration and prevents overfitting.
Range: (0,1).

– ’eval metric’: ’auc’. AUC measures the quality of the model’s predictions irrespective
of what classification threshold is chosen and their absolute values. For our clas-
sification task, we don’t need well calibrated outputs and the cost of classification
errors in our case is not critical. Moreover, a paralel hyperparameter optimization
was evaluated using ’error’ as metric with similar results. Range: (0,1).

Cross validation was performed in 5 folds and 500 iterations, with and early stop at 100
rounds. Hyperparameter search was evaluated using ”test-auc-mean” as metric.

The bayesian hyperparameter space was designed in a conservative way, to avoid overfitting
of the data.
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Model decision tree

(a) Decision tree plot.
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(c) Importance gain plot.
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(d) Importance weight plot.

Figure (4) XGBoost built-in model interpretation plots.
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– ’max depth’: (3, 8). Default value is 6.

– ’gamma’: (0, 5). Default value is 0.

– ’learning rate’:(0, 1). Default value is 0.3.

– ’subsample’:(0, 1). Default value is 1.

Bayesian optimization was performed for 5 iterations with 8 steps of random exploration
and an acquisition function of expected improvement (’ie’). Best parameters were optimized
to {’gamma’: 3.262977074427203, ’learning rate’: 0.08113939174319618, ’max depth’: 7.84163489438336,
’subsample’: 0.9915277034216099}.

The following tables contain evaluation metrics obtained by training the model with the
best hyperparameters defined by bayesian optimization:

precision recall f1-score support

0 0.833378 0.896802 0.863927 41522.000000
1 0.904370 0.844792 0.873566 47968.000000
accuracy 0.868924 0.868924 0.868924 0.868924
macro avg 0.868874 0.870797 0.868747 89490.000000
weighted avg 0.871431 0.868924 0.869094 89490.000000

Table (7) Classification report for predictions of the train set using bayesian optimization hy-
perparameters.

0 1

0 37237 4285
1 7445 40523

Table (8) Confusion matrix for predictions of the train set using bayesian optimization hyper-
parameters.

precision recall f1-score support

0 0.829042 0.885107 0.856157 15423.00000
1 0.893471 0.840754 0.866311 17677.00000
accuracy 0.861420 0.861420 0.861420 0.86142
macro avg 0.861256 0.862930 0.861234 33100.00000
weighted avg 0.863450 0.861420 0.861580 33100.00000

Table (9) Classification report for predictions of the test set using bayesian optimization hy-
perparameters.

0 1

0 13651 1772
1 2815 14862

Table (10) Confusion matrix for predictions of the test set using bayesian optimization hyper-
parameters.
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If we compare these classification reports, in tables 7, 9 to the ones of a XGBoost classifier
with default parameters, in tables, 11, 13, we can observe similar metrics. However, the
confusion matrices for the default hyperparameters model, see tables 12, 14, were slighly
better than for the bayesian optimization model, see tables 8, 10. Therefore, I decided to
save the default parameters model to a file for further exploitation. The following step was
model interpretation.

precision recall f1-score support

0 0.835575 0.906652 0.869664 41522.000000
1 0.912773 0.845564 0.877884 47968.000000
accuracy 0.873908 0.873908 0.873908 0.873908
macro avg 0.874174 0.876108 0.873774 89490.000000
weighted avg 0.876955 0.873908 0.874070 89490.000000

Table (11) Classification report for predictions of the train set using default hyperparameters.

0 1

0 37646 3876
1 7408 40560

Table (12) Confusion matrix for predictions of the train set using default hyperparameters.

precision recall f1-score support

0 0.828747 0.892369 0.859382 15423.000000
1 0.899351 0.839113 0.868188 17677.000000
accuracy 0.863927 0.863927 0.863927 0.863927
macro avg 0.864049 0.865741 0.863785 33100.000000
weighted avg 0.866453 0.863927 0.864085 33100.000000

Table (13) Classification report for predictions of the test set using default hyperparameters.

0 1

0 13763 1660
1 2844 14833

Table (14) Confusion matrix for predictions of the test set using default hyperparameters.

5 Model interpretation

• XGBoost built-in model interpretation

The implementation is available at train wo spotlight.py.

According to the model’s decision tree in Figure 5, the first variable that is considered for
classification is ’profile’, the second is ’usd goal’. If we look at the importance plots (Figure
6), we can see that even though ’profile’ is always important, its order of appearance is not
conserved. Differences are due to different methods to compute the importance:
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Figure (5) Decision tree plot.

– ”weight”: number of times a feature appears in a tree

– ”gain”: average gain of splits which use the feature

– ”cover”: average coverage of splits which use the feature where coverage is defined as
the number of samples affected by the split

These model interpretation plots are not consistent, and conclusions about the contribution
of each feature to the model are not reliable. In order to obtaint reliability in model
interpretation, especially if we want to interpret the contribution of the features to single
results , we need a method that is both consistent and accurate. SHAP plots [6, 7] are
then the ideal choice.

• SHAP model interpretation

The implementation is available at SHAP error evaluation.py and EDA features important.py.
General SHAP model interpretation plots, such as the bar chart or the summary plot, allow
to see wich of the features are contributing to the predictions and their ordering. We can
observe in both plots (Figures 7,8, that 4 out of the first seven features were generated
during data preprocessing. In particular, the profile and frequency scores make important
contributions to the model.

Summary plot (Figure 8) also represents how the values of each feature contribute to
the classification. We can see, for example, that high economic goals apper to be more
frequently associated to failed projects. In fact, if we represent the distribution of ’usd goal’
in successful or failed projects [Figure 9), we can see that succesful projects have economic
goals that are centered in lower goal values.

We can also observe that higher values of the profile and frequency scores are associated
to successful outcomes, see Figures 10 and 11.

• Prediction error evaluation using SHAP force plots

The implementation is available at SHAP error evaluation.py.

SHAP force plots are representations of feature contribution for individual projects. If
we compute force plots for missclassfied projects, we can easily evaluate prediction errors
and potentially increase model performance. In fact, the analyzed missclassified projects
showed a common pattern (Figures 12a, 12b). The analyzed prediction errors were found
to have low profile scores and frequency scores that corresponded to the predicted class.
Therefore, if this diagnosis holds true after evaluation of a bigger representation of the
prdiction errors, we might introduce new features to buffer the predictive power of both
scores (see 7).
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(a) Importance cover plot.
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(b) Importance weight plot.
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(c) Importance gain plot.

Figure (6) XGBoost built-in model interpretation plots.
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Figure (9) Goal distribution in successful and failed projects.
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Figure (10) Profile score distribution in successful and failed projects.
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Figure (11) Frequency score distribution in successful and failed projects.

6 Development

6.1 Tools

The following development tools were employed:

• Python

• Git and GitHub

• Visual Studio Code

• iPython and Jupyter Notebooks

• LaTeX

6.2 Implementation of the processing chain

The project is made of several steps of different nature (such as data minin,g, feature extraction,
applying several classifier, and assessment of model, among others). The structure of the code
reflects this structure in the form of a processing chain. Each of the steps of the chain is
processed by a different Python script, that must be run in the corresponding order. Splitting
the whole processes in a chain made of independent modules also helps debugging and eventually
maintaining this software due to component isolation1.

The processing chain is made of the following Python scripts:

1The opposite case would be a monolithic system with complex interactions between modules, which is clearly
harder to debug and maintain because of its inherent complexity.
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(a) Successful predicted as failed.

(b) Failed predicted as successful.

Figure (12) Force plots for misclassified projects.
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1. pre join.py

2. pre decode JSON.py

3. pre deserialized to one hot encoding.py

4. pre date format and derived variables.py

5. pre currency and other variables.py

6. pre currency and other variables.py

7. pre join and drop live state.py

8. pre duplicates.py

9. pre profile pruning.py

10. pre category name pruning.py

11. pre country pruning.py

12. pre currency pruning.py

13. pre words.py

14. pre split train test.py

15. pre year EDA.py

16. pre data prep temporal and classification.py

17. pre text mining.py

18. EDA profiling.py

19. EDA tt profile.py

20. pre data model train.py

21. pre data model test.py

22. train first model wo ts.py

23. train wo spotlight.py

24. SHAP error evaluation.py

25. EDA features important.py

Each of these scripts is decribed in its corresponding section in this report.

7 Conclusions

• Creators should focalize their efforts in their project’s profile, because is determinant for
the success of their campaign. In future iterations of this project, the generation of more
profile related features could help improve the model’s performance. Information coded
as urls in the JSON encoded variables could be valuable in this context. For example,
processing the information contained in the images related to the project, could potentialy
increase model accuracy.
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• Keywords were also valuable for the model performance, but might be the source of pre-
diction errors. Other text mining methods could help to mitigate this effect, such as word
embedding techniques. Incorporation of information related to rewards (available from a
URL) could also be valuable. In addition, contextualizing keywords by combining Google
Trends interest metrics, Instagram and, Twitter tags in months before and for the duration
of a project’s crowdfunding could also help to mitigate prediction errors. An evaluation of
simultaneuos similar projects might also contribute to reduce errors.

• Information about creators and their previous projects could also be retrieved and con-
tribute to model performance.
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Figure (13) Wordclouds of successful and failed projects by principal category in the test set.
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